Short Natural Fibers Reinforced Polyolefin Composites
Abstract
This article summarizes modification techniques of the most popular polyolefin composite reinforced with short natural fibers based on two interface modification strategies: filler modification and matrix modification by additives. According to analysis of published papers, it can be concluded that the fiber pretreatment does not result in higher improvement of the properties compared with adding coupling agent in the compounding process.
Keywords: |
Polyolefin composites; natural fibers filler; fibersmatrix interface; filler modification.
|
Full Text: |
References
Espert, A., Vilaplana, F., Karlsson, S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties, Compos. A 2004, 35, 1267. https://doi.org/10.1016/j.compositesa.2004.04.004
Lee, S. Y., Chun, S. J.; Doh, G. H.; Kang, I. A.; Lee, S.; Paik, K. H. J. Influence of Chemical Modification and Filler Loading on Fundamental Properties of Bamboo Fibers Reinforced Polypropylene Composites. Compos. Mater. 2009, 43, 1639. https://doi.org/10.1177/0021998309339352
Mussig, J. Industrial Applications of Natural Fibres, Structure, Properties and Technical Applications, 2010, 564 p.
Kaboorani, A.; Faezipour, M.; Ebrahimi, G. J. Feasibility of Using Heat Treated Wood in Wood/Thermoplastic CompositesReinf. Plast. Compos. 2008, 27, 1689. https://doi.org/10.1177/0731684407084207
Xue Li, Lope G. Tabil, Satyanarayan Panigrahi. Chemical Treatments of Natural Fiber for Use in Natural, J Polym Environ 2007, 15, pp. 25–33. https://doi.org/10.1007/s10924-006-0042-3
Sobczak, L., Brüggemann, O., Putz, R. F. Polyolefin composites with natural fibers and wood-modification of the fiber/filler–matrix interaction, 2013, 127, 1, pp. 1–17.
Isac, S. Maleic Anhydride grafting of polyethylene [Online]. [Accessed 24.11.2016.]. Available: http://shodhganga.inflibnet.ac. in/bitstream/10603/ 2953/11/11_chapter%205.pdf
Pickering, K. L., Ji, C. The effect of poly[methylene(polyphenyl isocyanate)] and maleated polypropylene coupling agents on New Zealand radiata pine fiber-polypropylene composites. Journal of Reinforced Plastics and composites 2004, 23, 18, pp. 2011–2024. https://doi.org/10.1177/0731684404041139
Etaati, A., Pather, S., Rahman, M., Wang, H. Ground Hemp Fibers as Filler/reinforcement for Termoplastic Biocomposites, Advances in material Science and Engineering, 2015, 11 p.
Stark, N, M. Wood fiber derived from scrap pallets used in polypropylene composites. Forest Products Journal, 49, 6 1999, pp. 39–46.
Lei, Y., Wu, Q., Yao, F., Xu, Y. Preparation and properties of recycled HDPE/natural fiber composites, Composites Part A – Applied Science and Manufacturing, 38, 7, 2007, pp. 1664–1674.
Lee, Y., Delille, K., Bismarck, A. Greener Surface Treatments of Natural Fibres for the Production of Renewable Composite Materials Cellulose Fibers: Bio – and Nano – Polymer Composites: Green Chemistry and Technology Kalia S, Kaith B S, Kaur I, – Berlin: Springer, 2011, pp 156 – 158.
Bledzki, A. K., Mamun, A. A., Jaszkiewicz, A., Erdmann, K. Polypropylene composites with enzyme modified abaca fibre, Composites Science and Technology 70, 2010, pp. 854–860. https://doi.org/10.1016/j.compscitech.2010.02.003
Modifying the Quality of Fiber with Enzymes [Online]. [Accessed 25.11.2016.]. Available: http://www.paperage.com/issues/sept_oct2009/ 09_2009 refining_enzymes.pdf
Karmarkar, A., Chauhan, S. S., Modak, J, M. Chanda, Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites: Part A 38, 2007, pp. 227–233. https://doi.org/10.1016/j.compositesa.2006.05.005
SilagePro. American Farm Products [Online]. [Accessed 25.11.2016.]. Available: http://afpltd.net/silagepro/
Sol-Gel Scheme.svg [Online]. [Accessed 25.11.2016.]. Available: https://commons.wikimedia.org/wiki/File:Sol-Gel_Scheme.svg
Brostow, W., Datashvili, T., Jiang, P., Miller, H. Recycled HDPE reinforced with sol–gel silica modified wood sawdust, European Polymer Journal, 76, 2016, pp. 28–39. https://doi.org/10.1016/j.eurpolymj.2016.01.015
Shaji, J., Sreekuma,r P.A., Kenny, J. M., Puglia, D., Thomas, S., Kuruvilla, J. Oil palm microcomposites: Processing and mechanical behavior. Polymer Engineering and Science, 50, 2010, pp. 1853–1863. https://doi.org/10.1002/pen.21699
Vihodceva, S., Kukle, S. Dipping Time Influence on the UV Properties of Natural Textiles Treated via Sol-gel Method. No: Proceedings of the International Conference. Nanomaterials: Applications and Properties. (NAP-2013), Ukraina, Alushta, 16–21 September, 2013. Sumy State University, 2013, pp. 1.–4.
The chemically treated hemp fibres to reinforce polymers [Online]. [Accessed 25.11.2016.]. Available: http://www.tworzywa.pwr.wroc.pl/ pdf/artykuly/article_Polimery2011_Kaczmar_Pach_Burgstaller.pdf
Aimi, N. N, Anuar, H., Manshor, M.R., Wan Nazri, W.B., Sapuan, S.M. Optimizing the parameters in durian skin fiber reinforcedpolypropylene composites by response surface methodology, Industrial Crops and Products, 54, 2014, pp. 291–295. https://doi.org/10.1016/j.indcrop.2014.01.016
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., 2011, 40, pp. 3941–3994. https://doi.org/10.1039/c0cs00108b
DOI: 10.7250/mstct.2016.001
Refbacks
- There are currently no refbacks.