Nanostructured Polyester Yarn Integration in Woven Vascular Implants

Viktoriya Kancevicha, Andrey Lukyanchikov

Abstract


Woven synthetic vascular prosthesis consisting of polyester yarn, nanostructured particles of colloidal silver and polyurethane yarns and natural silk surgical thread were offered in the process of this scientific and practical activity. Previous scientific and practical experience of manufacturing various types of vascular prostheses was used in designing a new prosthesis. Advanced biomechanical and other properties used in the development of yarns were examined. The innovative structure of woven walls of prosthesis has normal biomechanical properties. Expressed antimicrobial activity of nanostructured wall of the prosthesis is an important indicator for the successful incorporation of synthetic implant in a living organism. These prostheses are capable of providing long-term normal physiologic hemodynamics in the recycled circulatory system.

Keywords:

Silver nanostructured yarn; synthetic vascular implant; woven synthetic vascular prosthesis

Full Text:

PDF

References


Kanceviča, V., Lukjančikovs A. Vascular Implants Reinforced with Natural Silk Yarns. Material Science. Vol. 8, Riga: RTU Publishing House, 2013, 16.–19. lpp. ISSN 16913132.

Yang, Cao, Bochu, Wang. Biodegradation of Silk Biomaterials. International Journal of Molecular Sciences. 2009, Vol. 10, Issue 4, pp. 1514–1524.

Holmes, T. C. Novel Peptide-Based Biomaterial Scaffolds for Tissue Engineering. Trends in Biotechnology. 2002, Vol. 20, No. 1, pp. 16–21. http://doi.org/bktmmq

Wenk, E., Markle, H. P., Meinel, L. Silk Fibroin as a Vehicle for Drug Delivery Applications. Journal of Controlled Release. 2011, Vol. 150, No. 2, pp. 128–141. http://doi.org/b9z6d6

Altman, G. H., Diaz, F., Jakuba, C., et al. Silk-Based Biomaterials. Biomaterials. International Journal of Environmental Science and Development. 2003, Vol. 24, No. 3, pp. 401–416.

Dyakonov, T., et al. Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug. Journal of Drug Delivery. Vol. 2012, p. 10.

Matsumoto, A., et al. Mechanisms of Silk Fibroin Sol-Gel Transitions. The Journal of Physical Chemistry. 2006, Vol. 110 (43), pp. 21630–21638. http://doi.org/ch35g6

Li, M., et al. Structure and Properties of Silk Fibroin Poly (Vinyl Alcohol) Gel. International Journal of Biological Macromolecules. 2002, Vol. 30, Issue 2, pp. 89–94. http://doi.org/d5w4hc

Zhang, Q., et al. Study on Silk Fibroin Gelation: Effect of Polyalcohol. Advanced Materials Research. 2011, Vol. 175–176, pp. 137–142. http://doi.org/cfngjn

Wang H., et al. The Properties of Native Silk Fibroin (SF) Solution / Gel from Bombyx mori Silkworms During the Full Fifth Instar Larval Stage. Journal of Wuhan University of Technology – Materials Science Edition. 2011, Vol. 26, No. 2, pp. 262–268.

Craig K., et al. Anti-Thrombogenic Modification of Small-Diameter Microfibrous Vascular Grafts. Arteriosclerosis, Thrombosis, and Vascular Biology – Journal of the American Heart Association. 2010, Vol. 30, pp. 1621–1627.

Sato, M., et al. Small-Diameter Vascular Grafts of Bombyx Mori Silk Fibroin Prepared by a Combination of Electrospinning and Sponge Coating. Material Letters. 2010, Vol. 64, Issue 16, pp. 1786–1788. http://doi.org/cxjs58

Nakazawa, Y., Asakura, T. Development of the Tissue Engineered Medical Products Based on Silk Fibroin from Bombyx mori and Transgenic Silkworm. Journal of The Society of Fiber Science and Technology. Japan, 2009, Vol. 65, Issue 1, pp. 11–13.

Nakazawa, Y., et al. Development of Small-Diameter Vascular Grafts Based on Silk Fibroin Fibres from Bombyx mori for Vascular Regeneration. Journal of Biomaterials Science. 2011, Vol. 22, pp. 195–206. http://doi.org/cpgps3

Asakura, T., et al. Development of Small-Diameter Graft Made from Silk Fibroin. The Society of Polymer Science, Japan. Polymers – Hot Topics in Polymer Science in Japan, January 2010, Vol. 59, No. 1.

Guan, G., et al. Cellular Compatibility and Hemocompatibility of Silk Fibroin-PET Based Small Diameter Vascular Graft. In: FiberMed11 – International Conference on Fibrous Products in Medical and Health Care. June 28–30, 2011, Tampere, Finland.

Enomoto, S., et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. Journal of Vascular Surgery. 2010, Vol. 51, Issue 1, pp. 155–164. http://doi.org/fgdkvb

Baranova, O. N., Zolina, L. I. Celuloznye volokna, modificirovannye gidrozolem serebra s priminenijem rastitelnih dubitelej. In: Mezhdunarodnaja nauchno-prakticheskja konferencija, Medtekstil–2012. Moskva, 8–9 October 2012, pp. 29.

Horobraja, E. G., Bakina, O. V., Serova, A. N., Tihonova, I. N. Antisepticheskij perevjazochnij material, impregnirovannijchasticami kolloidnogo serebra. In: Mezhdunarodnaja nauchno-prakticheskja konferencija, Medtekstil –2012. Moskva, 8–9 October 2012, pp. 35.

Kochkina, N. E., Skobeleva, O. A., Padohin, V. A. Issledovanije kinetiki sinteza nanochastic serebra v sisteme DMSO-krahmal In: Mezhdunarodnaja nauchno-prakticheskja konferencija, Medtekstil–2012. Moskva, 8–9 October 2012, pp. 38.

Shumina, I. A., Kozlova, O. V., Telegin, F. J. Tekstilnye materialy s baktericidnymi svoistvami na osnove nanoserebra. In: Mezhdunarodnaja nauchno-prakticheskja konferencija, Medtekstil–2012. Moskva, 8–9 October 2012, pp. 45.

Burinskaja, A. A., Antova, A. N., Izmerova, E. P. Polichenije tekstilņyh materialov s baktericidnymi svoistvami. In: Mezhdunarodnaja nauchno-prakticheskja konferencija, Medtekstil–2012. Moskva, 8–9 October 2012, pp. 73.

Purinja, B. A., Kasjanov, V. A. Biomehanika krupnyh krovenosnyh sosudov cheloveka. Riga, Zinatne, 1980.

Ceders, E. E., Kasjanov, V. A., Purinja, B. A. Deformirovanije Brjushnoj aorty cheloveka pri dvuhosnom prastjazhenii. Riga, Zinatne, 1980.




DOI: 10.7250/mstct.2014.001

DOI (PDF): https://doi.org/10.7250/g631

Refbacks

  • There are currently no refbacks.